A Strong Form of the Quantitative Isoperimetric Inequality

نویسندگان

  • NICOLA FUSCO
  • VESA JULIN
چکیده

We give a refinement of the quantitative isoperimetric inequality. We prove that the isoperimetric gap controls not only the Fraenkel asymmetry but also the oscillation of the boundary.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Strong Form of the Quantitative Wulff Inequality

Quantitative isoperimetric inequalities are shown for anisotropic surface energies where the isoperimetric deficit controls both the Fraenkel asymmetry and a measure of the oscillation of the boundary with respect to the boundary of the corresponding Wulff shape.

متن کامل

A Quantitative Isoperimetric Inequality for Fractional Perimeters

Recently Frank & Seiringer have shown an isoperimetric inequality for nonlocal perimeter functionals arising from Sobolev seminorms of fractional order. This isoperimetric inequality is improved here in a quantitative form.

متن کامل

On the quantitative isoperimetric inequality in the plane

In this paper we study the quantitative isoperimetric inequality in the plane. We prove the existence of a set Ω, different from a ball, which minimizes the ratio δ(Ω)/λ(Ω), where δ is the isoperimetric deficit and λ the Fraenkel asymmetry, giving a new proof of the quantitative isoperimetric inequality. Some new properties of the optimal set are also shown.

متن کامل

A Quantitative Isoperimetric Inequality on the Sphere

In this paper we prove a quantitative version of the isoperimetric inequality on the sphere with a constant independent of the volume of the set E.

متن کامل

A Mass Transportation Approach to Quantitative Isoperimetric Inequalities

A sharp quantitative version of the anisotropic isoperimetric inequality is established, corresponding to a stability estimate for the Wulff shape of a given surface tension energy. This is achieved by exploiting mass transportation theory, especially Gromov’s proof of the isoperimetric inequality and the Brenier-McCann Theorem. A sharp quantitative version of the Brunn-Minkowski inequality for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011